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Figure 1: Quadrotor helicopter.  
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Abstract 

During flight a quadrotor, vertical take-off and landing aircraft 

(VTOL), experiences aerodynamic loads (forces and moments). 

These loads are induced by airflow about the structure of the 

quadrotor and consist of both laminar and turbulent airflow. 

Despite this fact, all existing works on controlling quadrotors 

either ignore these loads, or only consider loads resulting from 

laminar airflow. This simplification or ignorance of the aircrafts 

dynamics deteriorates the quadrotor's control performance in a 

practical implementation. To address the difficulties associated 

with laminar and turbulent airflow during flight, the resulting 

aerodynamic loads are treated as deterministic and stochastic 

components respectively. This paper presents an extended model 

for a quadrotor which takes into account aerodynamic loading 

during flight using Newtonian and Lagrangian mechanics. 

Furthermore, a combination of Euler angles and Modified 

Rodrigues Parameters (MRP) are used for the attitude 

representation of the aircraft. This is to reduce the occurrence of 

singularities in the dynamic equations. A combined one-step 

ahead backstepping and standard backstepping controller is 

designed to achieve path-tracking control of the quadrotor. This 

control method is used to compare and contrast the effects of 

taking into account turbulent loads with ignoring these loads on 

the behavior of the quadrotor. Weak and strong nonlinear 

Lyapunov functions are used to overcome difficulties caused by 

underactuation and Hessian terms induced by the stochastic 

differentiation rule.  

 

Themes: Aerodynamics, Turbulence. 

 
Introduction  

Many engineering systems operate in the presence of adverse 

aerodynamic loads, including: aircraft frames, propeller blades, 

and any form of turbomachinery. In the past decade there has 

been growing interest in the use of Unmanned Aerial Vehicle 

(UAV), for both government and commercial applications. One 

problem with small UAVs such as quadrotors is their 

susceptibility to wind fields and gusts. These disturbances not 

only degrade the performance of the aircraft but can increase the 

danger of operating them in populated areas. When considering 

these aerodynamic disturbances a particular concern is turbulent 

airflow. Turbulent airflow with its chaotic nature can lead to 

drastic reductions in performance and at worst catastrophic 

failure and damage to property and personnel. However one of 

the many attractive attributes of the quadrotor is its simplistic 

structure, having a rigid cross frame body equipped with four 

fixed pitch propellers (see Figure 1). Due to the simplistic 

structure, the quadrotor has very poor aerodynamic properties. 

The quadrotors structure causes flow separation about the aircraft 

during flight to occur, exacerbating the effects of turbulence and 

increasing the aircrafts instability. The four rotors are configured 

such that two rotors counter-rotate relative to the other two. (i.e. 

two rotors turn clockwise and the other two counter-clockwise). 

The paired opposing rotation compensates for the reactive 

torques that would cause the aircraft to yaw in an uncontrolled 

manner. The vertical motion (altitude) is obtained by the 

collective speed increase or decrease of all four rotors. The pitch 

and roll motion are obtained by changing the speed of the front-

rear pair and the left-right pair of rotors, respectively. Yaw 

motion is realised by the difference in the reactive torques 

between the two pairs of counter rotating rotors. Horizontal 

motion (latitude and longitude) result from the combination of 

the pitch, roll and vertical motions. The motions of the quadrotor 

aircraft are nonlinearly coupled which increases the difficulty of 

controlling the aircraft. Furthermore, the aircraft is underactuated 

because there are only four independent control inputs, a 

pitching, a rolling and a yawing moments and a collective thrust. 

This is because each motor is fixed in position with only its rotor 

able to rotate, while the direction of thrust relative to the aircrafts 

frame can not change. However, there are six degrees of freedom 

(latitude, longitude, altitude, pitch, roll, yaw) to be controlled, see 

[1] for more details on controlling other underactuated 

mechanical systems. Difficulties in controlling the motions of the 

quadrotor aircraft arise from the mentioned nonlinear coupling 

and underactuation. In addition the non-deterministic (chaotic) 

nature of turbulent airflow being applied to the airframe increases 

control difficulty. A brief review of the related works on 

controlling multi-rotor aircraft is given below to motivate 

contributions of the paper. 

 

Because the quadrotor aircraft operates in three-dimensional (3D) 

space, controlling and examining the behaviour of all six degrees 

of freedom in flight has recently attracted attention of researchers 

in the control and robotics communities. Firstly, attitude control 

was obtained in [2] and [3], local position control in [4], [5] and 

[6]. Position control has also been addressed in [7] and [8]. Local 

position control was achieved on a physical quadrotor in [9], 

[10], [11] and [12]. However, a one-step ahead backstepping 

controller and the unit quaternion were used in [13] to obtain 

global asymptotic control. In all these works on control of 

quadrotor aircraft and others not listed here, the loads (forces and 

moments) induced by airflow on the aircraft were neglected or 

assumed to be deterministic. In practice these assumptions do not 



hold, as wind loads acting on the aircraft always contain both 

laminar and turbulent flow. This paper treats these loads as 

having both deterministic and stochastic components 

respectively. In the case of the quadrotor, whose body is in no 

manner aerodynamic, neglecting these components can result in 

significant deterioration of control performance. As such, 

stochastic differential equations (SDE) will be used to model the 

dynamics of the aircraft. SDE’s are useful for modelling systems, 

with high degrees of uncertainty which is not reasonable to be 

ignored. Such a situation is the case of turbulent airflow about an 

object. 

 

 

Aircraft Dynamics Modelling  

For modelling the motion of the quadrotor Newtonian and 

Lagrangian mechanics are used instead of Navier–Stokes. This is 

because the later is significantly more difficult to design an in 

flight control scheme for. Thus, the equations of motion of a 

quadrotor are described by: 
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where the position of the quadrotor’s centre of mass is given by 

the vector 𝜼1 = [𝑥 𝑦 𝑧]T denoting the (latitude, longitude, 

altitude) displacements of the centre of mass of the aircraft 

coordinated in the earth-fixed frame. The vector 𝝂1 = [𝑢 𝑣 𝑤]T 
denotes the linear velocities of the aircraft coordinated in the 

earth-fixed frame. The vector  𝒗𝑏  denotes the linear velocities of 

the aircraft coordinated in the body fixed frame. The MRP 𝒒, 

which represents the attitude (orientation) of the aircraft 

coordinated in the earth-fixed frame. The vector 𝝎 denotes the 

aircraft’s angular velocity vector coordinated in the body-fixed 

frame.  The vectors 
b

f  and τ   represent the control forces and 

torques coordinated in the body-fixed frame. The vectors b
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  and 
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τ   represent the disturbance forces and torques  
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where  𝐈3×3  is a  3 × 3  identity matrix.  𝐒(𝒙)  is the skew-

symmetric matrix of the vector 𝒙 = 𝑐𝑜𝑙(𝑥1, 𝑥2, 𝑥3) ∈ ℝ3 and ,

,  and  represent Euler angles defining the quadrotors attitude.  

 

Moreover, we define: 
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and  𝑚  is the mass of the aircraft.  𝐈𝐻  is the inertia of the 

aircraft,  𝑔  is the acceleration due to gravity and the vector 𝒆3 =
[0 0 1]T.  The relative velocity vector between the airfield in 

which the aircraft flies and the aircraft is given by:  

 ,
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is the air current velocity vector. The force and moment vector 

from the loading effect of added mass and inertia, due to the 

aircraft moving thought an airfield is defined as: 
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which can be rewritten as: 

 
  ,

b

r

A r A r r

r

 
   

 
M C

f
ς ς ς

τ
 

 

 

(14) 

 

is the load due to the air current velocity vc. Furthermore, we 

define   ,  
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The wind force and moment vector 
Aero

f , 
Aero

τ  due to the aircraft 

movie though a moving airfield is given by: 
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where 𝐠wind is a vector depending on the air density ,
rw
  wind 

coefficients, and frontal and lateral projected areas of the aircraft 

and Vrw is the relative wind speed to the aircraft. Considering that 

in practice airflow will comprise of both laminar and turbulent 

flow, these two components will be consider as deterministic and 

stochastic respectively. We can state: 
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https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations


Where ⦁̅  and ⦁̃  denote the mean-value (deterministic) and zero-

mean turbulent (stochastic) components of  ⦁  respectively. The 

deterministic components can be treated as unknown constants. 

The stochastic components are regarded as Gaussian random 

disturbances. By substituting equation (11) into the expressions 

for 𝐌𝐴Ϛ̇𝑟 , 𝐃Ϛ𝑟   and 𝐂𝐴(Ϛ𝑟)Ϛ𝑟 results in: 

,
A r A A a

 M M Mς ς ς  (23) 

,
r a
 D D Dς ς ς  (24) 

           ,
A r r A A a a A A a

   C C C C Cς ς ς ς ς ς ς ς ς  (25) 

 

 
 

   

 

   

1 3 3

1

11 12

21 22

0

,

A

A b

A A

A A

b

A A


 

  
  

 
  
  

M
C

M I

C C

C C

S ω
ς

S v S ω

ω

v ω

 

 

 

 

 

 

(26) 

 

In derivation of equation (24), we have used the property of the 

skew symmetric matrix, i.e., 𝐒(𝒙)𝒚 = −𝐒(𝒚)𝒙  for all  𝒙 ∈
ℝ3  and  𝒚 ∈ ℝ3. Substituting equations (23), (24) and (25) into 

equation (4) yields: 
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where 𝐌 = 𝐌𝑏 + 𝐌𝐴. If we now alter equation (27), so that the 

linear position system is represented in the earth-fixed frame 

while leaving the angular position system in the body-fixed frame 

and combining with the first equations  of (2) and equation (3) 

results in: 
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where: 
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If we now alter the above system of equations, so that the linear 

position system is represented in the earth inertial frame, while 

leaving the angular position system in the body frame equation 

(32) becomes: 
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where w1, w2 and w3 denote the 3-dimensional Wiener standard 

process vectors. The terms 𝒇̅𝐴𝑒𝑟𝑜, 𝝉̅𝐴𝑒𝑟𝑜 and 𝐂𝐴21(𝒗𝑏)𝒗𝑏 +
𝐂𝐴222(𝝎)𝝎 represent the mean value of forces and moments 

induced by wind gusts and aerodynamic loading due to travelling 

through an airfield. Moreover, the terms ∆1(𝑡)𝒘̇1, (𝐂𝐴21(𝒗𝑏) +
𝐂𝐴22(𝝎) + 𝐂𝐴21(𝒗𝑏) + 𝐂𝐴22(𝝎) + 𝐃2)∆2(𝑡)𝒘̇2  and ∆3(𝑡)𝒘̇3, 

where the dot denotes the normal time derivative, represents their 

stochastic components. 

 

Simulations 
Using the model presented in the previous section, we will 

present a simulation of the aircraft being controlled by a 

combined one-step ahead backstepping and standard 

backstepping controller [18]. Furthermore, by incorperating weak 

and strong nonlinear Lyapunov functions it is possible to 

overcome difficulties caused by underactuation and Hessian 

terms. These Hessian terms are induced by the stochastic 

differentiation rule during the control design. To overcome the 

inherent underactuation of the aircraft, the roll and pitch angles of 

the aircraft are considered as immediate controls and are 

gernerated by the controller. A projection algorithm is introduced 

to design estimates of the deterministic components, and 

covariances of the stochastic components of the aerodynamic 

loads. To overcome difficulties associated with unmeasured 

linear velocities, output state feedback is used to estimate the 

quadrotors linear velocity. The aircraft’s parameters are taken as 

m = 2.0 kg, MA1 = 0.1I3×3 kg, 𝐈H = 10−3𝑑𝑖𝑎𝑔(5, 5, 9) 𝑘𝑔/𝑚2, 𝐈A  

= 0.2𝐈H 𝑘𝑔/𝑚2, 𝐃1 = 𝑑𝑎𝑖𝑔(0.25, 0.25, 0.125) 𝑘𝑔/𝑠2, 𝐃2 =  
10−3𝑑𝑎𝑖𝑔(2.5, 2.5, 0.03) 𝑘𝑔/(𝑠𝑚)2,  𝑔 = 9.81𝑚𝑠−2. The 

covariance matrices are taken as ∆1= 0.1𝐈3×3, ∆2= 1𝐈3×3, ∆3=
0.1𝐈3×3. The mean values of environmental disturbances are 

taken as 𝒇̅(𝑡) = diag(0.5, 0.5, 0.1) N, 𝝉̅(𝑡) = diag(-1, -1, 0.1) 
Nm and 𝒗̅𝑎

𝑏 = [1, 1, 0.5]T. The reference trajectories are taken as 

η1d(t) = [10cos(0.1t)-20, 10sin (0.1t), 0.1t]T, and 𝜓𝑑(𝑡) =
0.01𝑡. The initial states are  taken as  𝜼1(𝑡0) = [10,0,0]T, 

𝝂1(𝑡0) = [0,0,0]T, 𝒒 = [0,0,0]T and 𝝎 = [0,0,0]T. Excellent 

simulation results are plotted in Figure 2 and contrasted by 

Figure 3, which highlight the effects of ignoring turbulence. The 

position reference trajectory 𝜼1d and the position real trajectory 

𝜼1 are plotted in Figure 2 in all xyz-, xy-, xz-, and yz planes. The 

green curves denote the reference trajectories while the blue 

curves represent the real trajectories for the quadrotor. 

Contrasting the results of Figure 2 is Figure 3 which represents 

the quadrotor under a controller designed in the same manner, but 

does not take into account the turbulent dynamics. Moreover, it is 

clear that turbulent aerodynamic loads have an adverse effect on 

the performance of the quadrotor which is of concern considering 

the popular use of quadrotors in our current society. 

 



 
 

 
 

Conclusions  
A detailed model of a quadrotor aircraft in three-dimensional 

space exposed to environmental disturbances resulting from  both 

laminar and turbulent airflow has been presented. The effects on 

controlling the quadrotor under these conditions has been 

demonstrated. Simulation results show that by not taking into 

account the turbulent aerodynamic loads that a quadrotor 

experiences during flight has an adverse effect on the aircrafts 

performance. However, when  these aerodynamic loads  are taken 

into account  the aircraft performs notably well as it is able to 

compensate for these disturbances. The use of SDEs help to 

model the behaviour of the chaotic aerodynamic loads resulting 

from turbulence and, is therefore able to be compensated for 

when designing a controller. 
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Figure 3: Quadrotor helicopter without turbulent disturbance 

compensation. 

 
Figure 2: Quadrotor helicopter with turbulent disturbance 

compensation.      
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